Diversity In Academia: Solutions To Get There

RIGOBERTO HERNANDEZ, DISTRICT IV DIRECTOR

THE CHAIRS of some of the best funded chemistry departments in the country met on April 13–14 in Arlington, Va., at the third National Diversity Equity Workshop (NDEW; www.oxide.gatech.edu/NDEW2014) to talk about diversity within their faculties and entire departments. As with the recent demographics surveys of female C&EN, April 7, 2014, page 41, and underrepresented minority C&EN, May 18, page 37, faculty, the National Science Foundation’s rankings of research expenditures were used to select the top 50 or so departments invited to participate.

NDEW was organized by the Open Chemistry Collaborative in Diversity Equity (OXIDE), and I serve as OXIDE’s director. OXIDE is funded by several agencies jointly through an NSF grant (No. CHE-1048939) and is chartered to address multiple areas of diversity, including gender, ethnicity, disability, and sexual orientation.

A fundamental driver for OXIDE’s efforts is the notion that diversity demographics will achieve parity with availability only if we all work together to solve it. This also requires substantial input from experts in the social sciences who study the issues in a broader context and who have been great contributors as speakers in our workshops. All the chairs are in agreement about the importance of inclusive excellence—that is, that diversity is important to advance science and its practitioners. The recurring question is how to get there. Clearly there is no easy fix, but we did offer a list of easy-to-implement suggestions as follows:

1. Create a department diversity committee that is broadly reflective of your faculty’s perspectives (include straight, able-bodied white male faculty). Don’t overburden faculty from underrepresented groups (URGs). Establish deliverables to measure the committee’s success.
2. Develop a diversity statement and vision for the department, and post it on its website.
3. Create mentoring programs for students and faculty.
4. Conduct a faculty meeting on diversity excellence, including discussion of the business case for diversity.
5. Conduct faculty searches in broad areas.
6. Conduct regular lunches with faculty to discuss department climate and generate a diversity counter space.
7. Support affinity groups (for example, women in chemistry) through active participation of the chair and other faculty.
8. Conduct a departmental survey on diversity environment, and seek actionable options.
9. Implement a policy/program targeted to address climate and/or demographics.

SOME OF THESE suggestions were also discussed in our recent ACS Symposium Series article “A Top-Down Approach for Diversity and Inclusion in Chemistry Departments.” We argued therein, for example, that conducting faculty searches in broad areas—item 5—is critical to identifying and hiring outstanding faculty from URGs.

The rationale is based on a simple numbers game. Namely, when the overall candidate pool has low representation of URG members, then any additional criteria restricting the set further can easily lead to a candidate pool that is absent of such candidates. The problem is that top URG candidates who fail to gain an offer because of such restrictions often don’t remain in the pool for a subsequent hiring round, favoring instead other job opportunities outside academia. As a consequence, academia loses an opportunity to advance inclusive excellence in its ranks and on behalf of its students.

On the other hand, the advantages of advancing inclusive excellence are not restricted to academia. Many industrial chemical laboratories have been deliberately working to advance diversity in their ranks. This includes reaching out to academia as, for example, Dow Chemical did earlier this year in hosting my company-wide seminar on “Changing the Research Chemistry Culture from Within.”

In the ensuing discussions and more broadly, I have found that the suggestions in OXIDE’s list are as useful for industry as they are for academia with only a modest translation of the titles in the respective administrative positions. Indeed, the common theme through all these suggestions is that achieving inclusive excellence is not something that can be done accidentally. Rather, one must be deliberate.

For all too long, it seems that we have been focusing on the underrepresentation in our graduates and the root causes behind that rather than on solutions. There are many examples of models that work, but I am afraid that there is not sufficient exposure to them. The 2003 National Research Council report “Minorities in the Chemical Workforce: Diversity Models that Work” is a useful resource for such examples.

The American Chemical Society has several programs and committees all intended to advance diversity and inclusion, and they are clearly part of the solution. Finally, OXIDE has started the hashtag DiversitySolutions to encourage discussion and dialogue on the subject, and I invite you to join the conversation so that we may help each other get diversity right.

Views expressed on this page are those of the author and not necessarily those of ACS.